Search results for "Hair cycle"

showing 2 items of 2 documents

Increased Susceptibility to Skin Carcinogenesis Associated with a Spontaneous Mouse Mutation in the Palmitoyl Transferase Zdhhc13 Gene

2015

International audience; Here we describe a spontaneous mutation in the Zdhhc13 (zinc finger, DHHC domain containing 13) gene (also called Hip14l), one of 24 genes encoding palmitoyl acyltransferase (PAT) enzymes in the mouse. This mutation (Zdhhc13luc) was identified as a nonsense base substitution, which results in a premature stop codon that generates a truncated form of the ZDHHC13 protein, representing a potential loss-of-function allele. Homozygous Zdhhc13luc/Zdhhc13luc mice developed generalized hypotrichosis, associated with abnormal hair cycle, epidermal and sebaceous gland hyperplasia, hyperkeratosis, and increased epidermal thickness. Increased keratinocyte proliferation and accel…

KeratinocytesPathologySkin NeoplasmsMutantMESH: Codon TerminatorMESH: Epidermal Cellsmedicine.disease_causeBiochemistryMESH: Acyltransferases / genetics*MESH: Keratinocytes / physiologyMice0302 clinical medicineHair cycleMESH: AnimalsPalmitoyl acyltransferase0303 health sciencesintegumentary systemNF-kappa B3. Good healthPhenotypemedicine.anatomical_structureNeutrophil Infiltration030220 oncology & carcinogenesisCodon TerminatorKeratinocytemedicine.medical_specialtyClinical SciencesOncology and CarcinogenesisDermatologyBiologyMESH: PhenotypeMESH: Skin Neoplasms / etiologyArticleMESH: Skin Neoplasms / genetics*03 medical and health sciencesMESH: Genetic Predisposition to Disease*medicineAnimalsGenetic Predisposition to DiseaseTerminatorMESH: NF-kappa B / physiologyCodonMESH: MiceMolecular Biology030304 developmental biologyEpidermis (botany)Dermatology & Venereal DiseasesMESH: Leukocyte Elastase / metabolismCell BiologyMESH: Bromodeoxyuridine / metabolismNFKB1Molecular biologyMESH: Neutrophil Infiltration[SDV.GEN.GA]Life Sciences [q-bio]/Genetics/Animal geneticsBromodeoxyuridineEpidermal CellsMutationNIH 3T3 CellsMESH: Mutation*Leukocyte ElastaseCarcinogenesisDHHC domainAcyltransferasesMESH: NIH 3T3 CellsJournal of Investigative Dermatology
researchProduct

Control of murine hair follicle regression (catagen) by TGF‐β1in vivo

2000

The regression phase of the hair cycle (catagen) is an apoptosis-driven process accompanied by terminal differentiation, proteolysis, and matrix remodeling. As an inhibitor of keratinocyte proliferation and inductor of keratinocyte apoptosis, transforming growth factor beta1 (TGF-beta1) has been proposed to play an important role in catagen regulation. This is suggested, for example, by maximal expression of TGF-beta1 and its receptors during late anagen and the onset of catagen of the hair cycle. We examined the potential involvement of TGF-beta1 in catagen control. We compared the first spontaneous entry of hair follicles into catagen between TGF-beta1 null mice and age-matched wild-type …

medicine.medical_specialtyApoptosisBiochemistryAndrologyMiceTransforming Growth Factor betaHair cycleInternal medicineIn Situ Nick-End LabelingGeneticsmedicineAnimalsHumansMolecular BiologyhirsutismMice KnockoutTUNEL assayintegumentary systembiologyChemistryTransforming growth factor betamedicine.diseaseHair follicleMice Inbred C57BLbody regionsmedicine.anatomical_structureEndocrinologybiology.proteinHuman hair growthKeratinocyteHair FollicleCell DivisionBiotechnologyTransforming growth factorThe FASEB Journal
researchProduct